Higher-order Changhee Numbers and Polynomials
نویسندگان
چکیده
In this paper, we consider the higher-order Changhee numbers and polynomials which are derived from the fermionic p-adic integral on Zp and give some relations between higher-order Changhee polynomials and special polynomials. 366 Dae San Kim, Taekyun Kim, Jong Jin Seo and Sang-Hun Lee
منابع مشابه
Differential equations for Daehee polynomials and their applications
Recently, differential equations for Changhee polynomials and their applications were introduced by Kim et al. and by using their differential equations, they derived some new identities on Changhee polynomials. Specially, they presented Changhee polynomials Chn+N(x) by sums of lower terms of Changhee polynomials Chn(x). Compare to the result, Kim et al. described Changhee polynomials Chn+N(x) ...
متن کاملDegenerate Changhee-Genocchi numbers and polynomials
*Correspondence: [email protected] 2Graduate School of Education, Konkuk University, Seoul, 143-701, Republic of Korea Full list of author information is available at the end of the article Abstract In this paper, we study some properties of degenerate Changhee-Genocchi numbers and polynomials and give some new identities of these polynomials and numbers which are derived from the generating ...
متن کاملA note on degenerate Changhee-Genocchi polynomials and numbers
In this paper, we consider the degenerate Changhee-Genocchi polynomials and numbers, and give some identities for these numbers and polynomials. AMS subject classification: 11B68, 11S40, 11S80.
متن کاملq-BERNOULLI NUMBERS AND POLYNOMIALS ASSOCIATED WITH MULTIPLE q-ZETA FUNCTIONS AND BASIC L-SERIES
By using q-Volkenborn integration and uniform differentiable on Zp, we construct p-adic q-zeta functions. These functions interpolate the qBernoulli numbers and polynomials. The value of p-adic q-zeta functions at negative integers are given explicitly. We also define new generating functions of q-Bernoulli numbers and polynomials. By using these functions, we prove analytic continuation of som...
متن کاملNew Changhee q-Euler numbers and polynomials associated with p-adic q-integrals
Using non-archimedean q-integrals on Zp defined in [15, 16], we define a new Changhee q-Euler polynomials and numbers which are different from those of Kim [7] and Carlitz [2]. We define generating functions of multiple q-Euler numbers and polynomials. Furthermore we construct multivariate Hurwitz type zeta function which interpolates the multivariate q-Euler numbers or polynomials at negative ...
متن کامل